Caveolin-1 deficiency increases cerebral ischemic injury.

نویسندگان

  • Jean-François Jasmin
  • Samit Malhotra
  • Manjeet Singh Dhallu
  • Isabelle Mercier
  • Daniel M Rosenbaum
  • Michael P Lisanti
چکیده

Caveolins (Cav), the principal structural proteins of the caveolar domains, have been implicated in the pathogenesis of ischemic injury. Indeed, changes in caveolin expression and localization have been reported in renal and myocardial ischemia. Genetic ablation of the Cav-1 gene in mice was further shown to increase the extent of ischemic injury in a model of hindlimb ischemia. However, the role of Cav-1 in the pathogenesis of cerebral ischemia remains unknown. Immunoblot and immunofluorescence analyses of rat brains subjected to middle cerebral artery occlusion revealed marked increases in endothelial Cav-1 and Cav-2 protein levels. To directly assess the functional role of caveolins in the pathogenesis of cerebral ischemic injury, we next investigated the effects of cerebral ischemia in caveolin knockout (KO) mice. Interestingly, Cav-1 KO mice showed a marked increase of cerebral volume of infarction, as compared with wild-type and Cav-2 KO mice. Immunofluorescence analyses showed an increased number of proliferating endothelial cells in wild-type ischemic brains, as compared with Cav-1 KO ischemic brains. Immunoblot analyses of wild-type ischemic brains showed an increase in endothelial nitric oxide synthase protein levels. Conversely, the protein levels of endothelial nitric oxide synthase remained unchanged in Cav-1 KO ischemic brains. TUNEL analysis also showed increased apoptotic cell death in Cav-1 KO ischemic brains, as compared with wild-type ischemic brains. Our findings indicate cerebral ischemia induces a marked increase in endothelial Cav-1 and Cav-2 protein levels. Importantly, genetic ablation of the Cav-1 gene in mice results in increased cerebral volume of infarction. Mechanistically, Cav-1 KO ischemic brains showed impaired angiogenesis and increased apoptotic cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability.

Free radicals play an important role in cerebral ischemia-reperfusion injury. Accumulations of toxic free radicals such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) not only increase the susceptibility of brain tissue to ischemic damage but also trigger numerous molecular cascades, leading to increased blood-brain barrier (BBB) permeability, brain edema, hemorrhage and i...

متن کامل

Caveolin-1 deficiency exacerbates cardiac dysfunction and reduces survival in mice with myocardial infarction.

Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia. Cav-1 has also been suggeste...

متن کامل

Cerebral Ischemia/Reperfusion Injury in the Hyperthyroid Rat

Background: Hyperthyroidism as a risk factor for stroke is not conclusive. There are no definite data on the relationship between ischemic cerebrovascular injury and hyperthyroidism. This study was designed to define whether the outcomes of post-ischemic stroke injury are influenced by chronic hyperthyroidism. Methods: Two groups of hyperthyroid (HT) and control euthyroid rats of equal numbers ...

متن کامل

The contribution of mannose binding lectin to reperfusion injury after ischemic stroke.

After complement system (CS) activation, the sequential production of complement products increases cell injury and death through opsonophagocytosis, cytolysis, adaptive, and inflammatory cell responses. These responses potentiate cerebral ischemia-reperfusion (IR) injury after ischemic stroke and reperfusion. Activation of the CS via mannose binding lectin (MBL)-initiated lectin pathway is kno...

متن کامل

Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 100 5  شماره 

صفحات  -

تاریخ انتشار 2007